>  资讯  >  正文

OpenAI出手解决GPT-4数学推理:做对一步立刻奖励,论文数据集全开

OpenAI 一个简单的动作,让大模型数学能力直接达到 SOTA。

而且直接开源论文数据集,包含 80 万个人类反馈标签!

这就是 OpenAI 的最新研究。基于 GPT-4,他们微调了几个模型,分别采用不同的监督方法。

一种是传统的结果监督,只对最终正确答案进行奖励。

另一种则是过程监督,区别在于奖励增加,对每一个正确的推理步骤进行奖励。

结果这一点改变,让采用过程监督的模型 Process Reward Model,可以解决 MATH 测试集代表子集中 78% 的问题,达到 SOTA。

英伟达 AI 科学家 Jim Fan 大胆预测说,下一步 OpenAI 大概会用这种方法微调 GPT-4。

OpenAI 表示:

我们认为探索过程监督在数学之外领域的表现非常重要。如果这些结果具有普遍性,那意味着过程监督将成为比结果监督更有效的方法。

奖励增多、效果变好

话不多说,先看 OpenAI 给出的具体例子。

比如这样一道三角函数的题:

用过程监督的模型来算,效果会是这样的:

OpenAI 表示,这道题对于大模型来说还是比较有挑战性的,GPT-4 也不太能搞定。而使用过程奖励是可以算出正确答案的。

这也是目前大语言模型比较饱受诟病的问题,容易产生逻辑错误,也被称为“幻觉”。

表现最明显的领域就是数学。

即便是先进如 GPT-4,这类问题也难以避免。

而降低幻觉的出现,又被视为走向 AGI 的关键一步。

此前为检测幻觉所使用的是结果监督,基于最终结果提供反馈,仅仅奖励最终正确的答案。

但效果显然还不太行,所以 OpenAI 想了个新招,把这种奖励增加会怎么样?

于是他们提出了过程监督方法,针对思维链中的每个步骤提供反馈,奖励每个正确的推理步骤。

结果表明,用 MATH 数据集进行测试后:

过程监督模型能够解决 MATH 测试集代表子集的 78% 的问题。效果优于结果监督。

而且随着每个问题考虑的解决方案的数量增加,性能差距也逐渐增大,也说明了过程监督的奖励模型更加可靠。

纵轴表示的是已解决的问题的百分比,红色线代表的是过程监督奖励模型,蓝色线代表的是结果监督奖励模型(PRM)

在测试中,过程监督有一个明显的优势:

可以准确指出解决问题的步骤中哪些是正确的,并且给出错误步骤的具体位置。

而这点在结果监督中,是具有挑战性的。

因此,在过程监督中,信用分配更加容易。

而且在对齐方面,过程监督也优于结果监督。

因为过程监督会直接奖励模型,按照对齐的思维链进行操作,每个步骤都会更精确。

产生的结果可解释性也更高,因为它鼓励模型遵循经过人类批准的过程。

相比之下,基于结果的监督可能会出现奖励不对齐的过程,而且通常更难进行审查。

此外,大模型还经常遇到一个问题叫做对齐税。也就是想让模型输出更安全,那性能就会有所下降。

而过程奖励,在数学领域能让这个对齐税,变成负的,即模型安全性和性能都保障。

总之,过程奖励这个小窍门,一次性解决了大模型数学推理方面的多个问题。

在实验结果方面,OpenAI 还给出了多个实例。

比如有一些情况,GPT-4 会出错,但是基于过程奖励的 PRM 能揪出问题。

最近有 30 名学生参加了一次考试。如果有 20 名学生考了 80 分,8 名学生考了 90 分,2 名学生得分为 100 分,那么这次考试的班级平均分是多少?

下面是模型的作答结果:

前面的作答没有问题,但是在第 7 步中,GPT-4 试图对表达式进行简化,出现了错误。

而奖励模型却察觉到了这个错误。

当然也有都不成功的例子,比如下面这道题 GPT-4 和 PRM 都被迷惑了:

来看一下模型的回答:

在第 4 步中,GPT-4 错误地认为该序列每 12 项循环一次,而事实上是每 10 项循环一次。

而这种计数错误也迷惑到了奖励模型。

此外,OpenAI 共给出了 10 个问题和解决方案。

可以看出,基于过程监督的奖励模型在一些问题上也会被迷惑住,但是在整体上明显表现得更好。

网友:再也不用做数学证明题了

很快,OpenAI 的最新工作在各个平台上都引发了热烈讨论。

有人评价:

如果这个方法在非数学领域也能奏效,我们现在或许正处于游戏规则即将改变的时刻。

还有人说,这项工作如果用在互动、教育方面,会非常令人兴奋,尤其是数学领域。

这不,有人就说,看来以后不用再做数学家庭作业和证明题了。

用一张图来总结,大概就是酱婶儿的:

也有人提出了自己的担心:这种密集的奖励信号是否会导致模型更容易陷入局部最小值。

但是如果能够足够随机化、全局搜索,或许模型的鲁棒性更高。

值得一提的是,这种 step by step 的方法,不止一次在提升大模型性能上奏效。

之前,东京大学和谷歌的研究人员发现,只要在对话中加一句“Let’s think step by step”,GPT-3 就能回答出以前不会的问题。

比如提问:

16 个球中有一半是高尔夫球,这些高尔夫球中有一半是蓝色的,一共有几个蓝色的高尔夫球?

如果要求 GPT-3 直接写出“答案是几”,它会给出错误答案:8。

但加上让我们一步一步地思考这句“咒语”后,GPT-3 就会先输出思考的步骤,最后给出正确答案:4!

而与之相呼应的是,这回 OpenAI 最新研究的论文题目就叫做《Let’s Verify Step by Step》。

论文地址:

数据集:

参考链接:

郑重声明:此文内容为本网站转载企业宣传资讯,目的在于传播更多信息,与本站立场无关。仅供读者参考,并请自行核实相关内容。

聚焦新闻

今日热点

热点排行

经济快报

中国品牌网致力于信息传播并不代表本网赞同其观点和对其真实性负责,若有任何不当请联系我们删除。

Copyright 2018- www.hanxinne.top All Rights Reserved

本网站展示资料或信息,仅供用户参考,不构成任何投资建议。 备案号:皖ICP备2023005497号